Páginas

quinta-feira, 30 de agosto de 2012

Por que o céu é azul?

Quando a luz passa através de um prisma, seu espectro é dividido em sete cores monocromáticas, eis que surge um arco-íris de cores. A atmosfera faz o mesmo papel do prisma, atuando onde os raios solares colidem com as moléculas de ar, água e poeira e são responsáveis pela dispersão do comprimento de onda azul da luz.
Quando percebemos a cor de um objeto, é porque ele refletiu ou dispersou, de forma difusa, o comprimento de onda associado à luz de uma determinada cor. Por exemplo, uma folha verde utiliza todas as cores do espectro para fazer a fotossíntese, exceto o verde, que é refletido.
Devido ao seu pequeno tamanho e estrutura, as minúsculas moléculas presentes na atmosfera difundem melhor as ondas com os menores comprimentos de onda, tais como o azul e violeta.
Durante todo o dia a luz azul (menor comprimento de onda) é dispersa cerca de dez vezes mais que luz vermelha (maior comprimento de onda).
A luz azul tem uma frequência que é muito próximo da frequência de ressonância dos átomos, ao contrário da luz vermelha, Por isso, a luz azul movimenta os elétrons nas camadas atômicas da molécula com muito mais facilidade que a vermelha. Isso provoca um ligeiro atraso na luz azul que é re-emitida em todas as direções.
Quando o céu está com cerração, névoa ou poluição, há partículas de tamanho grande que dispersam igualmente todos os comprimentos de ondas, logo o céu tende a ficar mais branco, devido à associação das cores monocromáticas.
No vácuo, existente fora das proximidades do planeta Terra, onde não há atmosfera, os raios do sol não são dispersos, logo eles percorrem uma linha reta do sol até o observador, por isso, os astronautas veem o céu escuro, como se fosse sempre noite.
Por que o pôr do sol e a alvorada são vermelhos?
Quando o sol está no horizonte, a luz leva um caminho muito maior através da atmosfera para chegar aos nossos olhos do que quando está sobre nossas cabeças. A luz azul nesse caminho foi dispersa quase integralmente, a atmosfera atua como um filtro, e muito pouca luz azul chega até nossos olhos, enquanto que a luz vermelha que é apenas transmitida nos alcança mais facilmente.
Além disso, o vermelho e o laranja tornam-se muito mais vívidos no crepúsculo quando há poeira ou fumaça no ar. Isso ocorre porque as partículas de poeira são bem maiores que as outras, presentes na atmosfera, provocando dispersão com a luz de comprimento de onda próximos, no caso o vermelho e laranja.
Por que as nuvens são brancas?
Nas nuvens existem gotículas de tamanhos muito maiores que o comprimento de ondas da luz ocorrendo dispersão generalizada em todo o espectro visível e iguais quantidades de azul, verde e vermelho unem-se fazendo com que a luz branca seja dispersa.

sexta-feira, 24 de agosto de 2012

O que são buracos negros?

Numa abordagem da física clássica, buracos negros são objetos celestes com massa muito grande - alguns deles com centenas de vezes a massa do Sol - que ocupam um espaço muito pequeno. Seu campo gravitacional é tão intenso que nem mesmo a velocidade da luz é maior do que a sua velocidade de escape. Com isto, a luz que entra em um buraco negro não pode mais sair, fazendo com que este não possa ser observado pelas técnicas usuais que analisam a luz emitida ou refletida pelos objetos celestes.
E o que é velocidade de escape?
Chamamos de velocidade de escape aquela cuja intensidade é suficiente para que um objeto possa “escapar” da atuação do campo gravitacional. A velocidade de escape na superfície de Terra é de aproximadamente 11,2 km/s; para que um objeto possa se libertar da atuação da gravidade de nosso planeta, precisa ser lançado com velocidade maior que esta.

Se um buraco negro não pode ser visto, como ele é detectado?
A observação de um buraco negro acontece de forma indireta, pois o que se pode ver são os efeitos que ele causa nas regiões próximas. Devido o seu imenso campo gravitacional, os outros corpos tendem a ser atraídos por ele. Medindo a velocidade com que os objetos se deslocam em sua direção nas regiões vizinhas é possível descobrir sua massa.
Quando um buraco negro absorve matéria dos corpos que estão próximos, esta matéria vai sendo comprimida, esquenta significativamente e emite grande quantidade de radiação em raios-X. As primeiras detecções dos buracos negros foram feitas com sensores que captavam esta emissão de raio-X.
Já foram observados fortes indícios de que existam buracos negros supermassivos no centro de algumas galáxias espirais, inclusive alguns cientistas acreditam que exista um destes buracos negros no centro de nossa galáxia, a Via Láctea.
Fonte: www.sófisica.com.br

sábado, 18 de agosto de 2012

O que são as miragens?

Um lago rodeado de palmeiras no meio do deserto. Isso é o que se chama de oásis. Ou melhor, seria um oásis, se não fosse apenas uma miragem. É sempre assim que acontece nos desenhos animados: o viajante cansado e com sede corre em direção àquele oásis tropical e, somente quando está prestes a mergulhar é que o lago, junto com todas as palmeiras, desaparece.
É verdade que esse tipo de miragem é apenas ficção, mas as miragens realmente existem e podem fazer parecer que há água onde não tem. Ao contrário do que acreditam muitas pessoas, as miragens não são uma alucinação provocada pelo forte calor. Elas são um fenômeno óptico real que ocorre na atmosfera e que pode inclusive ser fotografado.
Você também não precisa estar em um deserto para ver uma miragem. Elas acontecem com certa frequência, por exemplo, em grandes rodovias em dias de calor intenso. De longe, você vê a imagem de um veículo que parece refletido no asfalto da estrada, dando a nítida impressão de que o asfalto está molhado e que o veículo foi refletido por uma poça d’água. Mas, conforme você se aproxima, percebe que a rodovia está completamente seca.
Desvio da luz
O termo miragem tem origem na expressão francesa se mirer que significa mirar-se, ver-se no espelho. As miragens se formam a partir de um fenômeno chamado pelos físicos de refração – que nada mais é do que o desvio dos raios de luz.
Bom, mas para entender porque o desvio da luz forma as miragens, é preciso que você entenda, antes de tudo, como é a nossa visão. Nós só podemos ver porque os objetos refletem ou emitem luz. É justamente essa luz, que chega aos nossos olhos, que é enviada por meio de sinais elétricos ao cérebro. Interpretando os sinais, o cérebro dá forma aos objetos e assim nós enxergamos as coisas.
O problema (se é que podemos considerar isso um problema) é que o nosso cérebro entende que os raios de luz se propagam sempre em linha reta. Isso até seria verdade, se os raios nunca sofressem nenhum desvio pelo caminho. O desvio da luz pode ocorrer quando os raios atravessam meios com diferentes densidades, como da água para o ar, ou ainda de um ar mais frio para um ar mais quente, ou passam através de lentes.
Você pode observar facilmente o fenômeno da refração colocando um lápis dentro de um copo com água. Deixando-o parcialmente mergulhado, você vai notar que o lápis parece que está quebrado, o que obviamente não é verdade. Outro caso de refração é de um pescador que avista um peixe no mar e o vê mais próximo da superfície do que ele está. Nesses dois exemplos, nós vemos os objetos em posição diferente da que eles realmente se encontram. Isso ocorre porque não vemos a luz dobrar-se; vemos apenas os efeitos dessa dobra.
Mas agora voltemos às miragens! Você já reparou que na praia, em dias muito ensolarados, você vê as coisas que estão a certa distância meio “trêmulas”? O fenômeno físico que leva essas imagens parecerem trêmulas é o mesmo que leva à formação das miragens no deserto ou nas estradas. 
Devido ao calor intenso, forma-se uma camada de ar quente junto ao solo. E esse ar é menos denso do que o ar da camada situada imediatamente acima, mais frio. Como os raios de luz se propagam mais rápido no ar quente, eles encurvam-se para cima. Mas, como o nosso cérebro interpreta que a luz percorreu um caminho retilíneo, o que nós vemos é a imagem do objeto, que pode ser uma palmeira, por exemplo, invertida, como se estivesse refletida em poças de água sobre a estrada, ou um lago no deserto. A água é ilusória, mas a palmeira e sua imagem são reais. Esse tipo de miragem é chamado de miragem inferior.

Navios fantasmas
Existe outro tipo de miragem, esse mais raro, e muito mais impressionante, que são as chamadas miragens superiores. Ao contrário das miragens inferiores, elas ocorrem por uma distribuição de temperatura inversa, ou seja, uma camada de ar mais fria próxima à superfície e, acima dessa, uma camada de ar mais quente. Essas miragens também são difíceis de serem vistas por aí, porque são típicas de regiões polares ou de água muito fria.
As miragens superiores fazem o objeto visto parecer muito acima do que ele realmente está. Você pode, por exemplo, ver um barco flutuando no ar, ou ele pode parecer muito mais alto do que é na verdade. No caso das miragens marítimas, é possível a formação de imagens invertidas de navios que, devido à curvatura da Terra, ainda não estão visíveis. Mas também imagens diretas e suspensas sobre o horizonte são possíveis. Talvez seja daí que venham as lendas de navios fantasmas.
O Guiness Book of Records - Livro dos Recordes Mundiais – registra o mais distante objeto já visto por meio de uma miragem. A escuna Effie M. Morrissey estava no meio do caminho entre a Groelândia e a Islândia em 17 de julho de 1939, quando o Capitão Robert Barlett avistou a geleira Snaefells Jökull, na Islândia, que deveria estar a uma distância de 536 a 560 km. A distância aparente, no entanto, era de apenas 40 a 50 km. Se não fosse pela miragem, a geleira não poderia ser vista além de 150 km. Atualmente, sabe-se que várias geleiras que foram descobertas eram, na verdade, miragens. Incrível, não?
Você pode ver um fenômeno óptico similar a miragens superiores em qualquer dia de céu claro. Como a atmosfera terrestre não é um meio homogêneo - quanto maior a altitude, mais rarefeito é o ar – a densidade atmosférica diminui da superfície para o espaço. Esse fato faz com que a luz proveniente de um astro, ao atravessar a atmosfera, siga uma trajetória não retilínea.
Em consequência, quando olhamos para o sol, nós o vemos não em sua posição real, e sim mais alto do que ele realmente está. Por isso, o sol pode ser visto após se pôr e antes de nascer, mesmo estando abaixo da linha do horizonte. Além disso, quando o sol ou a lua estão bem próximos à linha do horizonte, os raios luminosos vindos da borda inferior encurvam-se mais acentuadamente do que os raios vindos da borda superior, fazendo com que pareçam elípticos.
Fonte: Invivo, Ciência.

sexta-feira, 17 de agosto de 2012

Big Bang

Durante muito tempo, os homens se questionaram sobre como o Universo teria surgido. Aos poucos, foi necessário abandonarmos a ideia de que ocupamos uma posição central no Universo e adotarmos a concepção de que nossa localização no Universo é insignificante.
A teoria do Big Bang considera que as galáxias estão se afastando umas das outras, conforme observado por Edwin Hubble, em 1930. Assim, admite-se que, em um passado distante, em torno de 10 a 15 bilhões de anos atrás, todas as galáxias encontravam-se em um mesmo ponto, a uma temperatura muito alta, que se expandiu no Big Bang.

Hubble Hubble

Portanto, embora o nome "Big Bang" nos remeta à ideia de uma espécie de explosão, na verdade, o que ocorreu foi uma expansão, a partir de um estado minúsculo (e muito denso) para o que é hoje. Em outras palavras, a Teoria do Big Bang não tem a finalidade de explicar o que iniciou a criação do Universo, o que existia antes do Big Bang ou até o que existe fora do Universo e, sim, como ele se "transformou" no que hoje chamamos de Universo.
O padre, engenheiro civil e cosmólogo belga Georges-Henri Lemaître foi, muito provavelmente, o primeiro a propor um modelo para o Big Bang, em 1927. Ele imaginou que toda a matéria estivesse concentrada em um ponto, que ele chamou de átomo primordial, e que este átomo havia se partido em muitos pedaços, os quais iam se fragmentando mais e mais, até chegarem aos átomos que conhecemos hoje. A hipótese levantada por Lemaître é a primeira ideia de que teria ocorrido uma fissão nuclear (processo no qual um átomo pesado se fragmenta em núcleos mais leves e estáveis).

Lemaitre Lemaître

Apesar de incorreta, uma vez que a hipótese desenvolvida por Lemaître viola as leis da estrutura da matéria, ela inspirou os modelos modernos de teorias sobre a origem do Universo.
Independemente de Lemaître, o matemático e metereologista russo Alexander Friedmann descobriu toda uma família de soluções para as equações da Teoria da Relatividade Geral (trata-se da teoria da gravidade, descrevendo a gravitação como a ação das massas nas propriedadades do espaço e do tempo, que acaba não só afetando o movimento dos corpos, mas também de outras propriedades físicas).

Mas, então, como funciona a teoria do Big Bang?
Conforme já dito, embora a expressão remeta à uma situação de explosão, a teoria do Big Bang busca explicar o desenvolvimento do Universo a partir do instante imediatamente posterior ao seu surgimento até o que temos conhecimento nos dias atuais.
Assim, a maioria dos estudiosos do assunto concebem o Big Bang como o momento no qual toda a matéria e toda a energia do Universo estavam concentradas em um único ponto, extremamente pequeno, semelhante ao que Lemaître havia proposto. Este ponto teria expandido, arremessando matéria por todo o espaço, fazendo surgir o Universo. Assim, quando falamos em Big Bang, nos referimos à expansão do espaço em si. A figura abaixo ilustra melhor esta situação.


Ao observarmos o céu à noite, percebemos que as galáxias estão afastadas umas das outras como se o céu fosse "preenchido" por espaços vazios.
No início do Big Bang, toda a matéria, toda a energia e todo o espaço que hoje observamos estavam comprimidos em uma área de volume zero e densidade infinita que, para os cosmólogos, recebe a denominação de singularidade.
Assim, no início do Big Bang, o Universo era muito denso e quente, além de possuir uma energia extremamente grande. Entretanto, expandiu-se muito rapidamente, tornando-se menos denso e resfriando-se.
À medida que sofria expansão, a matéria começou a se formar, ao mesmo tempo que a radiação foi perdendo energia. E, em apenas alguns segundos, o Universo estava formado a partir de uma singularidade que se estendeu pelo espaço.
Após a formação do Universo, surgiram as quatro forças fundamentais da natureza:
  • Força Gravitacional;
  • Eletromagnetismo;
  • Força Nuclear Forte;
  • Força Nuclear Fraca.

Isso significa que, no início do Big Bang, estas quatro teorias eram unificadas. Pouco tempo depois do início do Universo estas teorias se dividiram e passaram a ser como nós as conhecemos hoje.
No entanto, ainda é um enigma para os cientistas saber como estas forças já estiveram unidas. Muitos cientistam ainda persistem trabalhando para desenvolver a Teoria da Grande Unificação (GUT - Grand Unified Theory), que explicaria como isso aconteceu e de que maneira essas forças se relacionam entre si.

Robô Curiosity

Robô Curiosity realizará movimentos de teste dentro de uma semana


O robô explorador Curiosity começará a se movimentar pela superfície de Marte em menos de uma semana, enquanto os especialistas seguirão analisando as imagens de alta resolução enviadas para determinar sua rota, informou a Nasa.
Em uma semana, o robô deverá começar a se movimentar sobre a superfície de Marte em caráter de teste. No entanto, dentro de um mês, o Curiosity já deverá ter condições de utilizar seus instrumentos e braços mecânicos para analisar a composição do solo de Marte.
Segundo os cientistas, o Curisosity deverá demorar um ano até chegar às encostas do monte Sharp (Agudo).
"Vamos girar as rodas um pouco em Sol 13 e dirigir uns metros para frente, girar e voltar para trás em Sol 15", indicou em uma teleconferência Michael Watkins, chefe da missão MSL do Curiosity.
A palavra Sol e o número seguinte indicam os dias das operações do Curiosity desde sua aterrissagem em Marte na última semana. Hoje, por exemplo, a missão se encontra em Sol 9.
Segundo os responsáveis pela missão, o robô deverá percorrer uma média de distância equivalente a um campo de futebol por dia e, por isso, necessitaria de cerca de 100 dias para chegar ao monte Sharp.
Uma vez no local, o plano é subir alguns metros do monte Sharp, situado à beira da cratera Gale.
Em pouco mais de uma semana na superfície de Marte, o robô explorador continua emitindo suas surpreendentes imagens, como as que foram publicadas hoje pela Nasa, as quais mostra o entorno que rodeia o robô em alta resolução, assim como as imagens vindas do satélite Mars Reconnaissance Orbiter, em órbita marciana, que marcam com grande precisão o lugar onde o Curiosity se encontra.
As imagens mostram um novo panorama das dunas de Marte, o terreno composto por pequenas pedras e o horizonte de montes onde se encontra o robô, o que ajuda os pesquisadores a planejar as rotas de aproximação ao Monte Sharp, o principal objeto de estudo do Curiosity.